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ABSTRACT

The dynamics of polydisperse merosol systems is described hy the
following equations for each particle size j:

, k=1 "
anj/at =F,+ 211'2]: Dy Ry i = 41rnj2 D, R, n

=t m=1
m=jei
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v naﬁay

Hidy ( 7 ) has numerically investigated the transient system when
the feed( Fj ) and sedimentation( ?janj/ay ) terms were neglected,
Later, Mockros et al, ( 10 ) included the feed term in their analysis
of the unsteady state system, Both investigations were looking for
asymptotic behavior in connection with the self-preserving size dist=-
ribution of the atmospheric aerosol. However, neglectingz the settling
term inherently restricted their results to the upper end of the size
spectrum which contains the smaller particles.

This study investigates the concept of the self-preserving size
distribution by including the settling term, feed term, and coagula-
tion terms,but ignoring the transient. Thus, the asymptotic behavior
of the dynamic steady state is obtained., Various feed configurations
are studied with respect to the steady state size distribution as
regards similarities to the self-preserving size distribution in
the atmosphers.

A aystem containing 400 discrete size classes is solved using a
fourth-order Runge-Kutta integration routine to integrate in distance.

Results indicate that the .solution to the steady state equation
in self-preserving form is dependent upon both the feed concentra-

tion and distribution. A definite similarity to experimental
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evidence for the atmospheric self-preserving size distribution
is seen when the dimensionless particle concentrations are

plotted in the proper form.
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INTRODUCTION

Dispersed systems with a gas-phase medium and a2 solid or liquid
disperse phase are called aercsols or aerodisperse systems. Until
recently, no rational classification was used to differentiate
between aerosols formed by dispersion and condensation while
distirguishing systems heving solid or liquid disperse phases.

Today there exists a scientific clessification of aerosols which
coincides with everyday non-technical langusge, Condensation and
dispersion aerosols with liquid particles are called mists, regardless
of particle size, Dispersion serosols with solid particles are called
dusts, again regerdless of particle =zize, Finally, condensation
aerosols witg & s0lid phase are called smokes; these include systems
of condensation origin containing btoth liquid and solid particles.

( Figure 1)
The subject of atmospheric particulates involves sizes in the

very wide range of 10~7

to 10-‘I cm. Passage from the lower to the
upper limit in particle size is accompanied by changes not only in
many of the physical properties, but also in the nature of the laws
governing them. This can be seen particularly clearly in the resiste
ance which a gas offers to the motion of particles. For very small
particles ( r<10™® cm, ) the resistance is proportional to the
velocity and the square of the particle radius. In the range 10"6 to
1‘3'-4 cm. there is a gradual change to Stokes Law; the resistance
remains proportional to the velocity, but the dependence upon radius
becomes linear. Further increase in redius brings deviation from
Stokes Law in the opposite direction; for veloclties that are not -
very low the proportionality oﬁ resistance and velocity ceases, while
at sufficiently large velocities and particle sizes, the resistance
is more nearly proportional to the square of the radius and the square
of the velocity( 5 ). ( Figure 2 )

When particles become sufficiently small( r~.24 ), Brownian

motion becomes important. This type of motion is caused by an uneven
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bombardment of the particles by the fluld molecules. There arse
fluctuations in the net force resulting in the particles following
a circuitous path. However, the particle mass is so large cocmpared
to that of the fluid molecules that changes in direction of the
particle are not present until a large number of collisions with
fluid wmolecules have occuired.

When aerosol particles come into contact and coalesce or
adhere to one-another the process is called coagulation., Particles
may come into pfoximity because of their Brownian motion, resulting
in thermal coagulation. Superimposed on this there mzv be an orderly
motion produced by hydrodymamic, electrical, gravitational or other
forces. The velocity of approach due to such forces may be large
enough to set up a rate of coagulation that is large compared with
that due to ﬁrownian motion, Thermal coagulation is spontaneous,
as is the coagulation of aerosols containing charged particles.
Other cases are frequently referred to as forced coagulation.

The atmosphere is a mixture of man-made and natural aerosocls
which is continuously fed by industrial and wunicipal smokes,
volcanic dusts, water vapor, later to become mist, and particu-
lates froma myriad of other sources.The atmosphere, however,
does not retain all these particles. Losses are accomplished by
coagulation of the aerosols to ever increasing particle radii until
they settle by gravity. Other mechanisms such as washout by rain
are also active.

Various investigaters have found a size distribution with a
shape that is apparently universal to urban and suburban areas.

The only apparent differences are vertical shifts in the curve due
to absolute number density( Figure 3 ). This size distribution is
similar to the decay of turbuleﬁt energy of flulds in pipes. In
fact, similarity transforms based on turbulent energy transfer
analogies have been used to study coagulation equations since they
cannot be solved explicitly ( 16 ).
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Various investigators have solved the coagulation equation
numerically for monodisperse and polydisperse aerosol systems
(7,19), but none have solved it including both feed and sedimen-
tation terms. The reason for this becomes obvious when it is
noted that this would involve simultaneous solution in two in-
dependent variables for large numbers of particle sizes. The
numerical solution of the coagulation equatior with one independent
variable presses today’s computers to their limit and two would be
unwieldy.

It was decided, therefore, to solve the steady state case of
the coagulation equation with feed and settling terms having the
goal of numerically simulating the experimental evidence foumd for
the apparent steasdy state size distribution in the atmosphere( the
atmospheric self-preserving size distribution).

Since the shape of the atmospheric distribution was seen to be
retained at various locations and altitudes, it was hypothesized
that the feed term could take on widely varying forms and yet yield
a shape reasonably consistent with that observed.

Aknowledged at the start of this work was the fact that the com-
plete numerical simulation of the steady state atmospheric dist-
ribution would reguire more computer time and data storage area
than would be feasible, Therefore, it was decided to calculate
solutions for three sections of the curve and attempt to fit them

together employing various curve smoothing techniques if necessary.



CHAPTER II

LITERATURE SURVEY

Investigationg of the coagulation eguation have accelerated in the
last few years._The increase in air pollution concern and investigators
quest for an understanding of the mechanics of aerccolleidal systems are
partly responsible for this increased interest.

The first coagulation model was developed by Smoluchowski (13) who
developed expresgions for a discrete or discontinuous distribution of
particle concentrations in various sizes (the size spectrum). Particles
of a particular size were considered as aggregates consisting of j mult—
iples of a unit size., The relation for the growth rate of a2 s0l was then
given by a set of nonlinear differential equations expressing the change
in concentration with time of each j-sized aggregate.

Hidy (7) numerically investigated a form of Smoluchowski'’s equation
with a slip correction for the Brownian diffusion coefficient. This
study employed various initial concentrations and A/r;i the particle
size parameter. Hidy found that the discrete size spectrum approached a
self-preserving form after a sufficiently large dimensionless coagula-
tion time. However, his solutions were limited to the upper section of
the spectrum because of the lack of a settling term in his work.

Mockros, et al. (10) investigated a form of Smoluchowski’s equation
modified to include a feed term. They concluded that the largest con-
centration occured at the particle size assoclated with the highest rate
of input and the peak size was invarient with time.

Friedlander and Wang (4) studied a continuous form of the coagula-
tion equationwith a constant collisibdn frequency factor. This study
concluded that the self-preserving spectrum was greatly influenced by
the form of the ¢ollision frequency factor, particularly the lower end.

Other evidence supporting the hypothesis that the'self;preserving

size spectra are asymptotic forms approached by coagulating dispersions

b ]

* See NOMENCLATURE for a complete listing of symbols



vas found by Swift and Friedlander (16) whose coagulating oil-in-water
emilsion experiments wers found to be self-preserving in form,

Since various investigations of the coagulation equation employing
similarity transforms supported the hypothesis of a self-preserving
size gpectrum, a direct solution of the coagulation equation wag in
order, This would involve the addition of a feed and settling term to
the basic coagulation equation in order to more realistically simmlate
the atmospheric aerosol. Also, since Friedlander and Wang (4) found
that a constant.collision frequency factor influenced their results,

the variable factor would be used.



CHAPTER III

THEORETICAL ANALYSIS
Basic Assumptions and Derivation of Particle "types"

Attempting a mathematical description of a polydisperse aerosol
system with feed and sedimentation, one proceeds from the development
of a polydisperse coagulation equation to an elemental particle bal-
ance on the system. The dymamic steady state behavior is then obtained
by including the settling, feed, and coagulation terms but ignoring
the transient,

Theories of Brownian, or thermal, cocagulation usually start with

the assumption that particles adhere
large particles this agssumption has firm theorstical and experimental
basis ( 5 ). They also presume that all collisions yield perfect

spheres, that there are only binary collisions, and that the dispersing
medium is static with no electrostatic charges present.

. Ifaparticle "type" related to the radius is established with the
smallest particle in the system designated as particle "type 1" then

it is possible to relate a discrete_sysiem of particles by their "type",
For example, a "type 3" particle may have been fed in or formed by

the coagulation of a "type 2" and a "type 1" particle ("types” are -
additive). The "type 3" particle can be related,by it’s radius to the
"type 1" particle by the relation e

ST ot
The following relations?follow

'r4'= rﬁa 4 : F;" 1 E‘ g III—25




v = r1\3/5— etc. ( 1I1-% )

Trese relations can be recognized as fcllowss In a discrete systen
the volume of all particles must be muliiples of the volume of
particles of radius Ty. Since mass must be conserved, the collision
between two T, particles yield a particle T, of mass

b3
e ) ( 111-4 )

4
[—— 3 —
2( 3 r1p) = (

ox

r, = [T, ( 1115 )

ro= w3 ( 1I1-6 )

10



Derivation of the Cozsulatiorn Equation

In analogy to chemical kinetics, the following coagulation

reaction occurs

K

2 "type 1" particles -——Jil—~»1 Wi{ype 2" particle ., ( 1II-7 )

Thus, the disappearance of "type 1" particles according to Equation

( III-7 ) is

end the anrsza

( TI1-7 ) is

! 2
- = 2K, , n ( I1I-8 )
dt !
ance’ of "{vna 2" particles according to Myuation
dn2 )
—— = K, ,nj ( 111~-9 )
dt !

where subscripts denote particle M"types” and

n = concentration of particles
dn,
E;— = rate of change of the particle
concentration due to coagulation
K1 4 = coagulation constant for the
’

process described .

‘The 2 appears in Equation ( III~8 )} because there are two "type 1"

particles lost from the "type 1" size class when a “typé on particle

is formed.

11



"ype 1" particles dicapponr not only beomnae of collicions with
other "type 1" particles, but also due to collisicns with "tvpe 27,

"type 3", etc, , aggregates with the follewing always applying

dn,
-{ — = K, ,n,n ( III-10 )
(dt )1,2 1,212

or in general

dn1
-l — = K, .n ( 111-11 )
(dt )1,k 1ok 1nk'
: k=1
sltogether, the following then o .21 = For tiip Jdizzppearance of

"type 1" parvicles

0y
2
-(dt ) = Wy gny + Ky oy +eee # K nmy, (111212

If the entire coagulation process is to be described, the change
with time of the total number of all particles must be calculated,
This temporal change is

4 & dn, dn, dny -
— n, = =— + —— 4 o4 4+ —=o ( III-13 )
at J dt dt dt

=1

It is necessary, therefore, to calculate the terms



13

at * at + °©te.

is in Equation ( III-12 ), the loss of "typs 2" arcregatss by cooz-
zlation is

dn
-(-——;) . = K2’1n2n1 + 2K2,2n2 + K2’3n2n3 +* aee

+ Ky 1Bl ( III-14 )

where the subscript L designates loss,
In short

dn k
2 E : 2
N o n X n + K n. . I1T-1
(d‘t)L 2 2,0 m 2,2°2° ( 5)

However, during the same periocd of time an increase of "type 2"
particles occcurs due to the coagulation of "type 1" particles. As
two "type 1" particles are needed to form a "type 2" particle, this

increase according to Equation ( III-9 ) is

dn
2 2
+(__) = K, .oj ( 11116 )
it / @ ’

where the subscript G designates gain.
The net change of "type 2" particles is thus given by the use of
Equations ( III-15 ) and ( ITI-16 );



(?Ln2 k
-] —— = n2 K2 n + K,) n2 -
at / 14 Z e 222

m=

2
K1,1n1 . ( 1I1-17 )

The coagulation-conditioned decrease of the larger aggregates
is subject to the formal structure of Equation ( III-14 ) or ( III~15 ).
If in Equation ( IIT-15 ), the specific subscript "2" is replaced

by the general subscript "j", we obhtain

dn, k
J ¥ 2
-f-— = n. E E. n + K. .n ( III-18 )
dt L J J!m I J'J J

The format of the type of aggregate observed at any particular
time may follow several processes starting from "type 4" aggregates.
Since formation of aggregates hy three or more simultaneous collisions
has been excluded by assumption, "type 4" particles can be created by
two Ytype 2" particles or by a "type 3" and a "type 1" particle, For
the generation of "type 3" aggregates we thus have

dng
+{ — = K, .n,n ( 111-19 )
(dt )G 1,27172

and for "type 4" aggregates

14
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dn
4 2
-+(-——) . = k2,2n2 + £1’3n1n3. ( IT1-20 )

The last expression can be written in generalizZed form as

1
2
o K3/2,3/2%/2 ( m1-21 )

for j even

1f the two components of the ccagulation process, i.e. , Equations
( 1I1-18 ) and ( III-21 ) are combined, the following equation for the
net change with time of the number of specific multiple aggregates con~

gisting of j "type 1" particles is obtained;

dn., k i
J 2
-(—-—) = n.z K, By + Ky gy -
it / 14G J J1 ’

m=1
( I1I-22 )

k=j-1 |

1 J 1 o

-_— K. nn «}—K, n.

) A1,m%i%m . 3/243/275/2
i=1
m=Jj-i for j even

*
K, . 1 uivalent to K
i, 5 3,1



¥zen the total is summed over j, the net change, with tire, of the
total particle number ig obtained ( this describes the overall coag-
ulation process).

Two terms appear in the coagulation equation which do not appear

in summations, namely

2
K., .n% 111~
5933 ( T1-23 )
and
- -;1— K n2
o 3/2,3/273/2
( I11-24 )

for j even .

These are normally assumed to be negligible when compared to the
summation terms. In this work they were shown to be negligible

(See Apendix A ) by a trial computer program comparison. Qualitat-
ively, these two terms can also be shown to be negligible. Since

they represent single terms compared with summations that can have
many terms, their significance is decreased by the summations. Also,
coagulation constants bearing like subscripts, i.e., those represent-
ing probabilities of collisions between like sized particles, are
muchk smaller than probabilities of collisions between unlike sized
particles { Table 1 ). Hence, the coagulation equation is simplified

to

dn, k | k=
3 - '
-1 = . K. e . _
(dt ) L+G nJE jom'm 2 Z Ky, %" ( 111-25 )
m=1 i=1

m=j=i
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Derivation of the Coagulation Constant

The coagulation constant described by Equation ( III-7 )} is, in
actuality, a probability of collision between two dispersed particles
as a result of their Brownian motion. The coagulation constant is
most easily derived by taking advantage of the similarity between
Brownian motion and diffusion. The model assumes a single stationary
spherical particle with a radius T, and a diffusing particle of ra-
diusrj.In the range of particle sizes considered here, Van der Waals
forces strongly attract particles that come into close proximity by
way of their Brownian motion and are bonded together. This means that
over a spherical surface of radius r, + rj s the particle concentra-
tion remains zero. The diffusional flux across the surface depends on
the average rate at which particles cross as a result of their Brown-
ian motion. '

In order to find the diffusional flux, the distribution of par-
ticles diffusing toward the sphere of radius T; is considered in
spherical coordinates with angular and azimathal symmetry. The conc-—
entration, n, of these particles satisfies the unsteady state dif-

fusion eguations;

on on, -
J 1 b

— = D —5 ...§_ 1-2 — ) ( 1I1~26 )

3t r or dr

where D ig the Brownian diffusion coefficient of the aerosol
particles.
The system is shown in Figure 4. The boundary and initial

conditions for a dAiffusing polydisperse aercsol are
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Figure 4. The Coagulation Diffusion Medel



iYt =0, r>r

+r. ,n,=n
J

i J o

ii)'t>0,r-—-—-——->cn,nj=n.

iii) t+ > 0, TETy 4T, By =0

( 11127 )

The first boundary condition states that the initial concentration

of "type j" particles is a constant with the initial distance bhetween
particles greater than the coagulation radius, T, + rj « The second

boundary condition is for an infinite medium, while the third is for

the assumption that each collision is effective, The final form is

presented by various authors ( 5, 7, 16 ) and is based ~1 the solution

of the appropriate stochastic problem by A. N, Kolmogorov and M. A,

Leontovich ( 8 ). For the sake of brevity,the solution 1is

n, r, +r r—(ri-i-rj)

+ exf

where 5 ¢ -52
erf t = ——e e ° &8,

The flux toward the particle is

dn
.* j
- J ri+rj=-(-DT)|r=ri+rj.

( 111-28 )

{ 111-29 )

When Equation ( ITI-28 ) is operated on by Equation ( III-29 ) the

result is

20



ana
— = n _— ( II11~30 )
dr 30 1‘2 xDt
and
(anj) Dnjo T, + Ty ( )
p | —]i_ _ = ——— |1+ — ITI-31
dr /IF =T T3 Ty + Ty =Dt

Thus, the number of j particle contacts per i particle per unit time

is

Dn. r. + T,
% % Jo i J
4 = - ds = 1+
i = f, - x
S T. + T, 7Dt
i J
2
{4r(r.+rj) } ( 11732 )
or
r. + 1.
. i by
o, . = 4-.-rnn50 ( Ty + Ty ) {1+ ( 111-33 )

e N
k3

x
where 58 = surface area of coagulation radius.

&



It is now assumed that the coagulation process is viewed t
seconds after its start, when t>>( T + T )2/ D . In the case of
usual particle dimensions this means that the elapsed start of the
coagulation process exceeds 1072 to 10”4 seconds ( 1 ). The number
of encounters of i particles by j particles per unit time after

this initial period is then ’
o, . = 41an30 ( Ty b Ty ). ( I1I-34 )

An advance will now be made from the idea of a stationary ab-
sorbing sphere in order to account for the arbitrary movement of
both particles. Suppose that i 'and j particles move in space, re-
spectively, a distance X, and AXj in a time interval At. Then

their relative square displacement on the average is

(2%, - ax, )2'=Z;2; +;c_§- 2 AX; 8K, - ( II1-35 )
Since AXi and,AXj are independent
ZEITEE; = 0 ( 111-36 )
and
(AXi -ij )2 = AX§ + :1;3-. ( 111-37 )
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Hence, with the use of Einstein’s expression for the diffusivity

( 5 ), the corrected diffusivity for this case becomes

X% = (Axi -ij )2 = 2DAt = 2 (.Di + Dj Jat. ( I71I-38 )
Therefore
D=D; +D, ( 1I1-39 )
and
%5 " 47rnj0 ( D; + J:)J DI r; + T, ). ( II1-40 )

Now, the total number of j particle contacts per unit time is
( see Equation ( III-34 ))

Y5, © 1,5 "0

4= ( D, + Dj )( Ty + T )nionjO' ( I11-41 )

Since all collisions are gscumed effective, Ji,j represents the rate
of formation of multiple particles by the coagulation of particles of
“iype i" and "type j".

Because time is assumed much greater than the ratio of the
square of the coagulation radius ( r, + rj ) to the particle diff-
usivity ( D ), the collision frequency, Ji,j , does not depend ex-
plicitly on time. The collision frequency between particles of size
i and j is proportiocnal to the concentration of each multiple pres-

ent. By this reasoning, the subscript O appearing in the concentration

23
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terms in Equation ( III-41 ) will be dropped at this point with the

understanding that the terms n, and nj represent bulk phase con-

1
centrations. We thus have

Ji'j = 4( D, + Dj X T+ Ty ) nm.. ( 11142 )

Since the.coagulation process can be represented as (see Equation-
I1I-7 )

K.
i,J
g+ 2w, ( 111-43 )

it follows, from Equation ( I1I-42 ) that

Ki’j = 4“”1,331,3 ( I11-44 )
where

Di’j = D, + Dj ( I11-45 )

Ri,j = T; +T. ( I11-46 )

K',j is called the coagulation constant; it represents the
probability of collisions between particles of radius r, and rj
with bulk phase concentrztions n, and nj, respectively.

Equation ( III-44 ) can now be substituted into Equation ( III-

25 ) to yield
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dn k le=3-1
j .
—(-—) = 4wn.E D. R.. n = 2#2 D, R. n.n
dt J Jymm J,m I i1,m 1,m i'm
m=1 i=1
m=j=1 ( III-47)

which is the equation describing the cozgulation procegs of each

particle type in a polydisperse aerosol system,.



The Stokes-Cunningham Correction

When particles suspended in a gas are nearlj the same size as the
mean free path of the gas (A), the resistance to their motion decreas-
es. This causes an increase in the frequency of particle collisions
and subsequently this should result in an inerease in coagulation
rate. This phenomenon is linked to the slip of gas at the surface of
the particle. The "slippage" of gas along a surface is inherently a
non-continuunm éffect; thus its theoretical analysis involves conditions
where the parameter A/ri is non-zero.

The correction developed by Cunningham used for the Stokes set-
tling velocityand the Brownian diffusion coefficient for particles

on the same size as the mean free path of the medium is

A
¢ =c¢(1+ A, — ) ( III-48 )

r.
1

where

G = uncorrected value such as Stokes

settling velocity

G = corrected value.

Ai is given by Davies (3) as

A = 1.25T + .400e” (110 z; /), ( 1I1-49 )

Equation { IIT-49 ) is valid for paticles falling in the approximate

L



A

size range .255— < 10.0 . For this study Equation ( III-49 )
I‘i \

has been extended to — = 0,10 .,

r.
1
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The Atmospheric Particle Balance

BEquation ( III-47 ) is examined by various authors ( 4,6,7 ) with
initial distributions that are either monodisperse or polydisperse.
The form of Equation ( III-47 ) limits it to systems that are closed,
i,e., those which have no input of particles to the system or loss
of particles by sedimentation. This is physically unrealistic since
a closed system will eventually become free of aerosol particles by
sedimentation and/or adhesion to the walls of the vessel in which it
is enclosed.

Equation ( III-47 ) can be modified to include feed and sediment-
ation terms in order to more realistically investigate the atmos-~
pheric aerosol which has numerous sources of particles., This is
accomplished by performing a particle balance on an elemental volumn
of the atmosphere. The elemental volume is visualized ( see Figure 5 )
with sides dx, dy, and dz. Positive directions are indicated by the
arrows. The force of gravity is in the same direction as y. Additional

terms necessary for the elemental particle balance are

Fj , the j particles as feed to the element

;j s the Stokes terminal settling velocity of particles

of radius j ( "type j" )
and

daV, the volume of the element, dx dy dz .

The balance becomes
( generation of j particles/sec. ) + ( j particles/sec. )in

= ( accumulation of j particles )

~ ( j particles/sec. )out

( 111-50 )

where

28
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Figure 5. Elemental Volume of the Atmosphere
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( generation of j particles/sec. ) = dV( change due to coagulation)

( ITI-51 )

( 5 particles/sec. )ln = Fj av+ ( vn, ) dx dz ( I1I-52 )
an
( j particles/sec. )out = ( ;jnj + x_rj -a—;- dy ) dxdz ( ITI-53 )
. : . 3 .
( accumlation of j particles ) = — ( nJ.d‘T). ( III-54 )
ot '

L]

Combining Equations ( III-51,52,53, and 54 ) according to Equation
( ITII-50 ) give

( change due to coagulation )av + FydV + (;jnji) dx dz

on.

' J
-(v.n, )ixdz - ( v, — )dxdydz = -a-— (n.av). ( III-55 )
3’ I ay , 3t J

Simplification of Equation ( III-55 ) and substitution of Equation
( III-47 ) gives

=j-1 k
on 3 . :
—_— . ~ATn, . . .
Fj + 2er D_i,mRi,mnlnm 47 j E ])J'mR‘_]’mnm
dt . ‘
i=1 m=1
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Equation ( III-56 ) represents the system of differential equations
describing a coagulating and sedimenting polydisperse aerosol with
feed. :

Equation ( I11-56 ) is modified using the following dimensionless

variables

J
v, = ( 111-57 )
J N
and
kTN
CT m —— ( I11-58 )
3K
3 = dimensionless particle concentration
N = a reference particle number density, such
as the total number of particles per unit
volume
7 = dimensionless coagulation time
T = gabsolute temperature
k = Boltzmann’s constant
2 = viscosity.

1

Upon treatment of Equation ( III-56 ) with Equations ( III-57 ) and
( III-58 ) and introduction of the Stokes-Cunningham correction, one

31



obtains ( see Appendix B )

k=j-1 . k
ij J
= I, + Z, v,v - 2V
3 J i,mim Jjnm
1= m=1
m=j=-i
T,
A i o3
- (144, X ) ( I1I-59 )
J r, T oY ~
J 1
where
3
I.= F, = dimensionless feed
J J _
kTN2
D. R,
i,mi,m
Zi = ———me—ee = dimensionless coagulation
oI KT
) coefficient
67k |
AJ. = coefficient in Stokes-Cunningham correction
( see Equation ( III-49 ))
A = mean free path of air
3kTNy
V = —— = dimensionless length -
er?Pg
r, = radius of smallest particle.



Recognizing that ( see Appendix B )

J DY
(148, )—)? = P w1257 (—)3"2 4
3 r1 :r.:I
/3
pY 1/3
.40031/3(—)6-1.103 (T)
T
1
( 111-60 )
Equation ( III-59 ) becomes
] k=j=1 k
ij S J

—— I. + 7. v.v - 2v, 2. v -

T J z: i,m 1 m J:: Jjymm

i=1 m=1
m=j=-1
A A
{:12/5 v 1257 (—) 32+ La0033(—)
r r
1 1
» 1‘1 avj
/3
-1.10 (—-)}——--
e r Sy ( IT1-61 )

For the steady state case, the transient term (ij/ar) is set equal

to zero and Equation ( III-61 ) becomes
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dv. k=j-1 k
J :2 :
— I, + 2. v.v - 2v, 2, 4
a7 J § : imim JL Jyld m
i=1 m=1
m=j-i

| A A
[32/3 + 1.257(2=)5"% 4+ 400 (=) ;"
1 1

A

Ty
e3-1.1031/3(——-)]

which is the final equation of interest.

( 11I-62 )
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CHAPTER IV

NUMERICAL PROCEDURE

Preliminary Details and Investigations

The dimensionless coagulation equation with feed and sedimentation

terms was derived as ( see Equation( III-61 ))

3, k=4 k
—_—= I, + Z, v.v - 2v.z Z. v -
3+ 3 imim 3 jymm
) i=1 m=1
m=j-1

T

( /3 4+ 1,057 ¢ -l—) PLEI .4oo(.L)31/3
r

1 1
4 dv
A3 3
9— 1-103 ( A )) _a_;’__ ( V-1 )
vhere { see Appendix C )
Mt [:1/3 4 a¥/3]
Z = — i +m X
1o ET)
(15751 ‘
T

1

by _ /3 __.
1175 = ( 1.257 + .40 1.101 77 ===y

1

.2/3 .

1



C_l.'“

T

)

A
2’3 . = ( 1.257 + .400 e

n2/3

the dimensionless coagulation coefficient

and
3u
I, = P, =————= = dimensionless feed
J IR pN
= Vl = vm = dimensionless concentrations

kTN

T = t — = dimensionless time
3 u

A = mean free path of air

3kTHy

-<
I

= dimensionless length.

o s g

B

( v-2 )

4 fourth~order Runge-Kutta method was selected as the integration

technique to be used because of its ease of programming and stable

nature. This method, however, required large amounts of time and calc-—

ulation in comparison with some predictor-corrector methods. Hidy ( 7 )

found that certain instabilities resulted at a particle size parameter
of f\/r1 =10.0, using the predictor-corrector method of Hamming ( 12 ).

Since calculations would be carried ocut at A/r1 = 10,0, time and calc-

ulations were sacrificed for stability,

L]

As a check on the numerical proceedure, it was decided to investigate



Equation ( IV-1 ) without the feed or settling terms since a check

could be made against work done by Hidy ( 7 ). This would result in
golution of the equation

d k=j-1 k

ar Z 1,n't’n "’ijzj,m"m' (mv=3)
i=1 m=1
m=j-1

An upper 1limit of k=400 different "type" particles was selected to dup=-
licate Hidy’s work. This would necessitate a computer program to solve
four-hundred simultaneous differential equations. An example of one
differential équat}on ig ( for j=5 )

1. (21,4”1"4 *oBy,3%% * I3 0¥ t Z4,1"4”1)

2v5 35'1;’1 + 25,2v2 + 25’3:»3 + ... +

%5, 400400 ). (v-4)

The first set of terms within parenthesie represents the formation of
"type 5" particles by coagulation of smaller particles. The second set
of terms represénts the loss of "type 5" particles by their coagulation

with particles of all sizes. Calculation of the Zi e Z. coefficients
’

m Jem
can be accomplished by substitution of the correct numerical subscripts

and the value of .\/r1 inte Eguation ( IV-2 )},



The programming technique for the dimensionless coagulation coef-
ficients can be found in Appendix D. These were written on tape and
manipulated by the main program,
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Comparison with Previous Work

4 main program was written to read and manipulate the dimension-
less gain and loss term coefficients according to Equation { Iv-3 ),
The same initial conditions were imposed on Equétion ( Iv-3 ) that
Hidy ( 7 ) used. These were

at T=0, v, = 1.oo,v2._400 = 0.0, ( V=5 )

In addition, A/r1 = 1.00 was selected for comparison with the dimension-
less time increment,Ar, equal to 0,20 , Hidy used a dimensionless time
increment equal to 0,25 hecause he was integrating to a much larger
value of r than this work wés intending to go.

Execution errors occured in the initial runs because some values
of v were smaller than machine capacity. A trapping procedure was
employed which tested the values of v before they could cause an under~
flow problem. Referring to Equation ( IV-3 ), the product of vivy in the
g2in summation was geparated and one value of v multiplied by a factor
of 1070. This product was then multiplied by the remaining wvalue of v
and tested. If the final product was greater than 1,00 , the calculations
proceeded unaltered. If the final product was less than 1.00, the smal-
ler of the two values of v was set equal to zero, The loss summation did
not produce this problem. In addition, the program calculated the total
dimensionless mass at the end of each dimensionless time increment. This
indicated whether mass was being lost from the system. The program can
be found in Appendix F. .

Figure 6§ shows the results obtained by Hidy ( 7 ). For comparison,
our results for Equation ( IV-3 ) and the same initial conditions with
A7 = 0,20 are presented in Figure 7. The agreement is very good., It

was also found that the dimensionless mass remained constant at 1.00
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for each increment. Derivation of the equation used to calculate dimension-
less masses can be found in Appendix H.

It was.evident that the program was functibning properly. The next
step was conversion of the program to solve Equation ( IV-1 ) with the

transient term equal to zero.
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Conversion of the Main Program to Solve the Steady State Case

With the complex tape reading and subscipt incrementing function—

ing properly, attention was turned to solving the steady state case of

Equation { IV-1 ), rewritten below

dv,

dar

i

-

k=j=1

I, + 2. v,y -
J E : i,mim

i=1
m=j-1i

A -
2% . 1.257(-;’;—)31/3 ¥ .400(-;1—)31/3e 14103

k

2v, 2, v
22 e

m=1

(V-6 )

/321
A

Thé particle number was kept at four-hundred and the only changes
in the program were the addition of the feed term, Ij’ and division of
the coagulation and feed terms by the dimensionless settling velocity.
The change of the independent'variable from r to ¥ did not affect the

program.
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Discussion of'Boundary Conditions for the Steady State Solution

In this section the various parameters and conditions that were
necessary for the solution of Equation ( IV-6 ) will be discussed.
These include the particle size parameter, A/r1, the feed term, Ij’
the dimensionless distance increment, AY, and the dimensionless con=
centration,va.

The particle size parameter, A/r1, is necessary for modeling the
atmospheric aerosol because it defines particle radii based on the
mean free path of the diffusing medium, namely, air. The ordinate
of the atmospheric size distribution ( see Figure 3 ) is spanrped by
three decades of particle radii, with the smallest particle radius
aproximately equal to 7 X 10-3 microns. Since the mean free path
of air at 15.0° C and 760 mm. Hg (18) is

A= 6,63 X 1072 microns 5 (V-7 )

specification of A/r1 = 10,0 defines the smasllest radius for program—

ning use as

r = 6.63X 10~ microns ( v-8 )

With the smallest radius defined by Equation ( IV-8 )}, three decades
of particle radii proceed from 6.63 X 10"'3 microns toward 6.63 microns
by specifying two other segments, namely

-2 -
6,63 X 10 microns

(V=9 )

A
-i_-;--: 1.00,1‘1=

and



A -1
== = 0.10, r, = 6.63 X 107 microns ( Iv-10 )
1

. o
for air at 15.0°C and 760 mm. Hg. The size of the "type j" particle is

then described as

rs = A(—?—-)J} 3 ( Iv-11 )

In order to describe all discrete collisions between particles of
initial radius r,
j between A/r = 10,0 and A/r = 1.00 , To descibe all discrete col-
lisions of particles that are multiples of the unit particle ( T, =
6.63 X 10 ~> microns ) and having radii between A/r = 1,00 and O 10
would require 106 increments of }. Similarly, from A/r = 0.10 to 0.01

would require 109 increments of j. It is easy to see that certain com-

= 6,63 X 10'3 microns would require 103 increments of

promlseswerenecessary to keep computer time at a reasonable value,

The first compromise required that the number of different particle
"types" associated with each value of A/r1 would be four-hundred., These
would be the first four-hundred particle sizes covering the same rela-
tive pogitionof each decade of .\/::.'.l ( see Table 2 Ve Secondly, in order
to have four-hundred particle "types" associated with each value of
A/r1, certain particle sizes would also be skipped when )L/r1 = 1.00 and
0.10 . The value of r, associated with each value of A/r differed by
a factor of 10 . This meant that for A/r = 1.00, each 1ncrement of 3
would skip 10 radii that were multiples of 6.63 X 10° -3 microns. In the
same manner, the wvalue of ry associated with )L/r1 = 0,10 would skip 10
~radii as compared to A/r1 = 1,00 or 100 when compared to )L/r1 = 10,0,

These compromises were necessary.in order to describe the steady
state distribution as well as possible, without excessive run-time for
each value of A/r1. Also, programs for each value of A/r1 would be the
same except for the values of A/r1 which would distinguish them when

read in as data.
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The dimensionless distance increment, AY, was chosen to proceed in
a downward direction (see Figure 5). This meant that Y was incrementing;
via integration, from an arbitrary point in the atmosphere toward the
ground.

The dimensionless concentrations, Vj' also had to be specified at
the zero value of Y, The selection of the boundary valugs for :3 were
somewhat arbitrary.

Some data on the mixing ratio of aerosols in the atmosphere are
available, Figufe 8 shows that at a distance of two to sixteen kilo-
meters above the ground, the fraction of aeroscls is almost four orders
of magnitude smaller than at ground level. Undoubtedly, these concentra-
tion differences are significantly affected by the source, type, and
gize of aeroscl particles that are being introduced at various altitudes.
For example, at the higher altitudes natural aerosols predominate while
at the lower altitudes man-made aerosols have a significant effect.

It was decided that integrations would proceed from a distance above
the ground ( Y= 0 ) where the concentration of aerosols was small, Thus,
;3 for j from 1 to 400 would be set equal to zero at ¥ equal to zero.

The final choice of an integration limit for the dimensionless length,
Y, was determined by an allowable integration increment, available com-
puter time, and dimensionless variables which established a relation
between final values of ¥ for each value of A/r1. Since it was necessary
that the terminal values of the dimensional length, ¥, be the same for
each value of A/r1, three different final values of ¥ were necessary. This

is demonstrated by examination of Equation ( B-10 ) rewritten below

zkTN

Y = --——-é-———y ( Iv=12)
2--rr1Pg

or in terms of ¥y

" 2wr$pg

y= ———— - | (I -13)
3ETN

47



ALTITUDE ( km. )

28

24

20

16

12

i 1 i i

10~ 14 - o712 10~10 1078

MIXING RATIO ( FRACTION OF WEIGHT )

Figure 8, Mixing Ratios as a Function of Altitude (9)
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With 2 terminal value of Y= 1.00 for the segment A/r1 = 10.0, the value
of y from Equation ( IV-13 ) is

1.00 ( Iv-14 )

It was necessary that the final value of y for the other two segments,
namely, A/r, = 1.00 and 0.10, be equal to that given by Equation ( IV-
14 ) for /\/r_' = 10,0 ., This was required for the linkage of the three
sections of )\/:r:1 at the same dimensional distance. With y determined by
Equation ( IV-12 ) for Y= 1,00, final values of Y for the remaining

two segments were accomplished by substitution of Equation ( IV-14 ) into
Equation ( IV-12 ) with the term, r°, in Equation ( IV-12 ) determined by
the value of A/r1. This procedure iz shown below for A/r1 = 1,00,

sETN 2 (55 Yee
Y= — S 1.00 ( Iv=15 )
2v(y55) re  3ETN

= 0.01.

In a similar manner, the final value of Y for the segment A/r1 = 0,10
was found to be 0,0001 .

Several trials for the integration increment, Ay, showed that a
 value of 0.05 was stable for integrations carried out at A/r1 = 1,00
and 0.10. A cycling effect was seen at AY equal to 0,05 for. )L/r.' =10.0
which disappeared when AYwas equal to 0.025.

With terminal values of Y determined by Fquation ( IV-12 ), and ac-
ceptable values for Ardetermined by trial runs, the final wvalues of AY

and ¥ for programming use were chosen to be



Yhipar = 1-00 with Av= 0.025 for A/r1 = 10.0 ( Iv-16 )
Yoinay = 0-01 with AY= 0.001 for >./:.-1 = 1.00 ( Iv-17 )
Yoinay = 000001 with AY = 0.00001 | for A/r.] = 0,10 ( v-18 )

The feed term, Ij’ was the last and most difficult value to ascertain.

It was not the purpose of this research to study this facet from a phys-
ical standpoint., Since a description of the atmospheric feed has not been
well defined, twe completely different feed term types were chosen for
investigation. These were an exponential and a constant feed type.

Since attempts would be made to link the three sections of the curve
(one for each value of A/r1), the exponential feed type was chosen so
that it would link at associated values of A/r1 and j. For programming

purposes, the exponéntial type feed equation was chosen to be

1/3 -
1= e(mANITT ( v-19 )
Once again, .\/r1 distinguished what section of the self-preserving size
distribution was being described. The linking feature of the exponential

feed equation is shown below.

For === = 10.0 ( Iv-20 )
1 I _ =100
1000 = ©
for 2 = 1,00 ( Iv-21 )
Ty ~-10.0
I = e

1000
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- 10-0

1 = €
A .

and for —— = 0,10 ( Tv-22 )
1 e-100.0

1000

Of course, Equation { IV=19 ) only describes a certain exponential
distribution., No attempts were made to adjust the equation by constants,
which would change the concentrations of the feed to, perhaps, conform
to the atmospheric feed. The shape of the feed distribution was of more
interest than the concentration of feed to each size class.

The second feed term was chosen to be a constant, i.e., all particle
"types" would receive the came feed of particles, This value was set,

arbitrarily, at

1j = 0,10, ( Iv-23 )

With the two widely varying feed types described by Equations ( V=19 )
and { IV-23 ), the coagulation equation could be studied for it's de-
rendence upon the feed term distribution. It was hypothesized that the
feed distribution would not seriously affect_the shape of the steady
state distribution obtained. |

In conclusion, for the exponential feed type, the specified conditions

were

for A 1/3
or =% = 10,0, 1.00, and 0,10, Ij = e (11/k )3
1

(Iv-24 )

]
(=]
.

and =0 for v1 to '@00

For the constant feed type, the conditions were



\ ,

for — =10.0, 1.00, and 0,10, I. = 0,10
:r:1 J

( 1v-25 )

and Y= 0 for v1 to ’200 = 0,

A sample program printout used for the solution of Equation ( V-6 )
is presented inrAppendix G. This can be compared with that used to du~
plicate Hidy’s work (7) in Appendix F.

Since it is not practical to describe =21l particle sizes in the
discontinuous spectrum using today’s computers, the use of three non-
interacting segments represented by A/r1 = 10,0, 1,00, and 0,10 are
used for this work, Because the segments are non-interacting, an at-
tempt at exact duplication of experimental evidence found for the
atmospheric self-preserving size distribution is unfeasible. The lack
of experimental data for the feed term adds to the problem of numeri-

cally similating the atmospheric self~preserving size distribution.
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CHAPTER V

RESULTS AND DISCUSSION

Goals and Conditions

The goa.lé. of this chapter are to describe the results obtained for
the sclution to the steady state dimensionless coazulation equation
with feed and sedimentation terms (see Equation ( III-62)). This is

rewritten below

k=j=1 k
dVJ
—=I.+E 2. wv,v —2v.§ Z, v
4y J i,mim J Jmm
i=1 m=1
m=j-1

(v-1)

Tq
[32/3 + 1.257(—:1—) 3.4 .400(-,-_3-‘1-) 31/3¢=1-10 31/3(7)]

The results are presented as plots of vj vs, J, 28 well as in a
self-preserving form., These represent the solution to Equation ( V-1 )
at a value of the dimensionless distance, ¥, that corresponds to equal
velues of y, the dimensional distance, for )L/r1 = 10,0, 1.00, and 0.10
(see Equations ( IV-16, 17, and 18 )). These distributions are examined
for the effect of coagulation, sedimentation, and feed term interactions.

Distributions of v 4 vs. J represent the variation of the dimension-
less concentrations with the particle "type". For these graphs and air
at normal atmospheric conditions, "type~3j" particles can be related to
théir radii by the use of Table 2, However, these distributions are

L]
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based on a dimensionless volume since Jj is the cube of a dimensionless )
radius (see Equation ( ITI-6 )) and v; is a dimensionless concentration,

The self-preserving tyre plots are based on the sinilarity theory
proposed by Swift and Friedlander ( 16 ). The results from solution of
Equation ( V-1 ) are arranged into the proper form and compared to
experimental evidence for the atmospheric seif—preserving size distribut-
ion.

The dlmen51onal values of nj, F .y and y, cannot be determined from
information glven in this work. Calculation of these values depends upon
specification of experimental conditions such as temperature, pressure,

and N, the total number of particles per unit volume.
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Presentation of Results and Discussion of the Distributions for s vs. J

Distributions of », vs. j for the exponential feed case are pre-
sented for the segments A/r1 = 10,0, 1.00, and 0.10 in Figures 9, 10,
and 11, respectively., Similar plots for the constant feed case are
presented for the segments A/r1 = 10.0, 1.00, and 0,10 in Figures 12,

13, and 14, respectively.

-In Figures-9 and 12 for A/r1 = 10.0, a maxirmum in the ccncentration
is observed, This is the point where the loss by sedimentation equals
the net gain by coagulation plus feed. The maximum for the exponential
feed case (Figure 9) occurs at i = 19 with y = 8.10 X 107, For particle
sizes smaller than j = 19, the net gain by coagulation plusg feed is more
rapld than the losses by sédimentation vhile for particle sizes greater
than j = 19, the eonverse is true, The maximum for the constant feed
case occurs at J = 4 with 13 = 2,28 X 10_3. The maximom concentration
for the exponential feed case occurs at a larger particle size., This is
caused by the siightly larger magnitude of the exponential feed term
which fesults in a greater particle concentration and hence a larger
coagulation rate (see Equation ( III~43 )). The slightly greater feed to
the exponential case is also exemplified by the larger overall values of
Vs for all values of ji. ‘

In Figures 10 and 13 with A/r1 = 1,00, the losses by sedimentation
are greater in magnitude than the net gain by coagulation plus feed for
both feed cases., The effect of the exponentially decreasing feed (Figure
10) is tolproduce a rmch more rapid decrease in :3 than the constant
feed type (Figure 13).

Figures 11 and 14 for A/r1 = 0.10 show a very similar behavior to
their respective feed types for A/r1 = 1,00, The expeonential feed is
prod?cing a very rapid decrease in 5. _

In general, the effects of coagulation and sedimentation are similar
for both feed types. However, there are significant differences in the
behavior which can be directly attributed to the feed type. Specifically,
the slopes are very different, partly due to the magnitude of the feed
and also the manner by which it varies with size. .
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Presentation of Results in Self-Preserving Form

The shape of the self-preserving size distributicn disylayed in

Figure 3 is consistent with that shown in Figure 15. The coordinates

in Figure 15 are more suitable for this work, The dimensionless

coordinates ¢(*g:)and ", are the result of the similarity theory

proposed by Swift and Friedlander ( 16 ) who tested results of oil-in-

water emulsions for self-preserving form.

The coordinates for the continuous spectrum, ¥( ﬂr) end 7, are

converted to those of the discrete spectrum and rearranged in terms of

vj and J in Appendix J. These become

2/3 4 1/3
IL 'q —— v
( rj ) =33 '3 :E:: 3 é 8

8

and

31/3
Ty = 1/3

where

:E:: 4
—_— g = ¢ = total volume fraction =

3 8

When the three segments were linked together, an alternate

method was used to calculate the dimensionless distribution

(v-2)

(v-3)

constant,

¢(”rj ) vs. Trj. This method allowed j to increment in such a way
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Figure 15. Self-Preserving Size Disfriﬁution for Atmospheric
Aerosols Sampled Near the Earth’s Surface
(After Clark and Whitby (2))



as to replace the use of A/r1 in specifyins larser particle sizes. This
rmethod also enabled a better visualization of the relation between A/r1
sesments, The alternate method of inmcrescnting § is shovm in Teble 3

which can be compared with Table 2 that was used for the numerical int—

egrations. According to Table 3, for air =t rcrmal atmosrheric corditions

6.63 X 107> microns (v-4)
and

r o=z 33 (v=5)

‘Thus, the terms ',b("?rj) and ﬂrj were calculated as

i

, 400 1/3 /400 X 10° 1/3
, 2/3
¥W( T, ) = 3397, ;>: 4 + E 4 +
3 J 3 e vB 3 TS vs
e=1 =107
6
400 X 10 1/3 V
4
Z TS v (7-6)
s=106
and
) soo . 1/3 /400 X 1034 1/3
= 1 3 — T v . — T v
’?r- = 3 g s | + E 3 s e +
J . 3
=1 8=10
6
400 X 10 1/3
Z : 4 (v-7)
--.):---:rs s _
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where J carried the wvalues

J =1 to 400, incremented by 1 : ( v-8)
3 = 10° to 400 X 10°, incremented by 107 ( V=9 )
and j = 10° o 400 X 106, incremented by 108 ( v-10)

The program used to calculate the coordinates described by Equations
( V=6.) and ( V=7 ) can be found in Appendix K.

The results of IDyuaticn ( V=1 ) for ?\/r1 = 10.0, 1.00, ani 0,10,
are plotted via Equations ( V-6 ) and ( V-7 ) in Pigure 16 for the
exponential feed case. It should be noted that the three segments
‘have been left unjoined. Even though this-work neglected interactions
of particles from différéﬂf )\/r1 segments, the three segments linked
together very well (no curve fitting routine necessary).

A definite similarity exists between the results of this feed
case (Figure 16) and the experimental evidence for the atmospheric
self-preserving size distribution (Figure 15). However, the exponential
feed has definitely dropped too rapidly causing a slope which is much
greater for larger particle sizes than that from experimental evidence,

The maximum value of ¢(”rj) for the exponential feed case is equal
to 5.8 at ”rj = 6.0 X 1071, This corresponds to j = 396 from Table 3.
The maximum value of ¥(7p) for the experimental plot is approximately
5.0 at My = 10-1. This agreement is much better than anticipated.

The self-preserving plot for the constant feed case is presented in
Figure 17. As with the exponential feed case, no curve fitting routine
was necessary. It is very evident that when the results of the constant
feed case are plotted in self-preserving form, the net coagulation rate
appears greater than that of sedimentation for all particle sizes. Thus,
there is a lack of a definite drop in w("rj) for larger particle sizes
as experimental evidence indicates,

The shapes of the distributions in Figures 15, 16, and 17, are
very dependent upon the total volume fraction, ¢, term (see Egquations
(V-2 ) and ( V=3 )). In addition to affecting the coordipates of the

e
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Distribution from Solution of the Dimensionless
Coagulation Equation with Feed and Sedimentation Terms, Exponential
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self-preserving plot, ¢ also affects the coaguiation rate. An increase
in coagulation rate for a particular value of k/r1 is caused by a .
larger concentration of particles and hence, an increase in the mog-
nitude of ¢. Thus,‘a dezcripticn of the self-preserving plots in
terms of ¢ is necessary.

The first plotted point for the exponential feed case (see Table 3,
j=1) in Pigure 16 is ¥( ’frj ) =8.22 % 1072 at *rrj = 8.21 X 1072,
Similarly, the first plotted point for the constant feed case is
(s ) = 212 X 107" at Tes = 2,17 X 1072 (Figure 17). Since j = 1
for both points, the only way in which there can be a smzller value of
nrj for the constant feed case is for ¢ to be larger for this feed case.
The larger magnitude of ¢ explains the lack of a decline in ¢(7rj)
values for larger particle sizes for the constant feed case; since the
net rate of coagulation plus feed is greater than that of sedimen-
tation as indicated by the larger magnitude of ﬂrj.

Perhaps a decrease of ¢(”rj ) would have been observed for the
constant feed case if Ij were smaller than 0.10, This would have the
effect of decreasing v., and hence ¢, thereby increasing 7y, to values

J
where a decrease in ¢(er ) would be expected.

The shapes of the curves in Figures 16 and 17 are the result of an
attempt at simulating the experimental evidence found for the atmo-
spheric self=-preserving size distribution. This attempt demanded many
compromises and assumptions, The neglection of certazin particle sizes
and the use of non-interacting segments limits cbnclusions‘of the results

of this work to basic shape comparisons.



CHAPTER VI

CONCLUSIONS

The following conclusions result from this studys

(1) The form of Equation ( III-62 ) seems applicable for studying

the atmospheric self-preserving size distribution, i.e.,

k=3~1 k
va
—— = I + Z, v,.v bl 2 Z R v
ay J E : i,mim J j,m m
i=1 m=1
m=j=1

323 4 1.257(—31—) 33 + 400 (D) 5173

1
1/3 (21,
e 1:10377 ()1 ( VI-1)
(2) The magnitude of the feed term, as well as its form,

affects the slopes of the selfwpreserving plots. An
inerease in the feed term causing an increase in

coagulation rate is consistent with theory.

(3) Because of the very good link~up of the segments for the

*



(4)

T

self-preserving prlotz, the interaction of rarticles between
segments appears to be minimal. However, the interpretation

of the zpparent unimportance of the interactions are still

_tentative.

The feed types chosen for this work exaggerated the effect of
the feed term as desired. However, z gradually decreasing
exponential feed or a constant feed of smaller magnitude

would appear to be more realistic feed functions for further

investigation.,



(1)

@)

CHAPTER VII

SUGGESTIONS FOR FURTHER TNVESTIGATION

Since segmenting of the steady state size distribution into
three segments did not seem to cause excessive interactions,
further investigation of the effect of non=interacting
segments should be continued.

A slowly decreasing exponential feed and a constant feed of
smaller magnitude should be studied for their effect upon

the dimensionless steady state distribution.

72



2.

3.

4.

Te

8.

g.

73

A SELECTED BIBLIOGRAPHY

Chandrasekhar, S., "Stochastiec Problems in Fhysics and Astron-
omy," Rev. Mod, Phys., 15,60-63, (1943).

Clark, W., and Whitby, K., J. Atmos, Sci., 24 , 684, (1967).

Daviesy C. N., Proc, Phys, Soe., ( Lonien ), 57, 259, (1945).

Friedlander, S. K., and Wang, C. S., "The Self-Preserving
Particle Size Distribution for Coagulation by Brownian
Motion,"™ J. Colloid and Interface Sci. 22, 126-132,

(1966)

Fuchs, N. A.,"The Mechanics of Aerosols," Pergamon Press Book
Company, New York, (1964)

Hidy, G. M., and Brock, J. R., "The Dynamics of Aerocolloidal
Systems,"  Pergawon Press, Great Britain, (1970)

Hidy, G. M., "On the Theory of the Coagulation of Noninter—
acting Particles in Brownian Motion," Jo Colloid Sei.
20 , 123-144, (1965)

Kolmogoroff, A., and Leontowitsch, M,, Phys. Z. Sowjetunion 4,
1, (1933)

McCormac, B. M., "Introduction to the Scientific Study of
Atmospheric Pollution," D, Reidel Publishing Company,
Dordrecht-Holland, (1971)



10,

11.

12.

13.

14.

15.

16,

17.

74

Mockros, L. F., et. al., "Coagulation of a Continuously
Reinforced Aerosol," J. Colloid and Interface Sei,

23 , 90-98, (1967)

n
Maller, H., "Die Theorie der Ecagulation Polydisperser
Systeme," Kolloid Zeitschrift 38 , 1-2 , (1926)

Ralston, A., and Wilf, H., "Mathematical Methods for Digital
Computers," Wiley, New York, (1960)

H i
Smoluchowski, M. v., "Drei Vortrage uber Diffusion,/Brownsche
Molekularbewegung und Koagulation von Kolloidteil-
chen," Physikalische Zeitschrift 17 , 558-599, (1916)

Smoluchowski, M. v., "Versuch einer Mathematischen Theorie
der Koagulationskinetik Kolloider Lgsungen,“
Zeitschrift Fuer Physikalische Chemie 92 , 129-168
(1918)

Stern, A. C,, "Air Pollution," Academic Press, New York,
Vol. 1, (1968)

Swift, D, L., and Friedlander, S. K., "The Coagulation of
Hydrogols by Brownian Motion and Laminar Shear
Flow," J. Colloid Sei., 19 , 621-647, (1964)

Wang, C. S., and Friedlander, S. K., "The Self-Preserving
Particle Size Distribution for Coagulation by
Brownian Motion," J. Colloid and Interface Sci. 24,

170-179, (1967)




18.

19-

75

West, R, C., "Handbook of Chemistry and Thysics," 4Eth,
Edition, Chemical Rubber Company, (1967)

Zessack, U,, "The Coagulation of Mixed Dusts, " Staudb
Reinatling Luft 28 , 53-60, (1968)




76

NOMENICTATURE

coefficient in Stokes~Cunningham correction for particle
!ltype_ jll

diffusivity of particles of "type i" and "type j"

feed of particles to "type j" size class

term in Stokes-Cunninghanm correction

acceleration of gravity

dimensionless feed of particles to "type j" size class
collision, frequency between "type i" and "type j" particles
particle flux

coagulation constant for "type i“.with "type j" particles
Boltzmann’s constant

total number of particles per unit volume

"type i" particle concentration

coagulation radius for particles of "type i™ with "type j"
particle radius

surface area of coagulation radius

abgsolute temperature

time

volume

Stokes terminal settling véiocity for particle "type j"
length

length



Z, . dimensionless coamlation ccefficient for rarticles "typs iV

with "type j¢

z langth

Greek Letters

Y dimensionlezs lensgth

5 variable in Equatien ( III-28 )

7 dimensionless coordinate of self-preserving size distribution
plot

A mean free path of air

m viscosit&

ko microns

yj dimensionless "type~j" particle concentration

¢ variable in Equation ( III-28 )

p '11f' density

ai,j | number of j particle contacts per i particle per unit time

T dimensionless coagulation timé

) total volume fraction

y dimensionless coordinate of self-preserving size distribution
plot

Subscripts

i=J=m=5s = intigers referring to particle "types"
i0 = jO = initial "types"

1 = particle "type 1"

17
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APPENDIX A

EFFECT OF THE NOX-SUMMED TERIS 0 THT SOLUTICH TO TED COAGULATIOY DoTATICN

The two extra terms, namely, Equations ( III-23 ) and ( III-24 ) were
added to the program for the steady state case (see Appendix G) and
tested for the conditions A/r1 = 0.10 and conaztant feod, The solution is
presented in Figure 18, This can be compared to Fizure 14 which is the
solution of the steady state coagulation equation for the same conditions
except deletion of the extra terms. A comparison of Figures 14 and 18
indicates that the non-summed terms are insignificant and can be ignored
for this work, '

The alteration of the main program for the purpose of testing the
effect of the non-summed terms can be seen in Figure 19. This can be

compared to the program found in Appendix G.
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DIMENSION X(400),XX(400),A(400),Q(400),D(400),F(400),T(400),K(4,4O

18 IX=((II-1)*KUAX~(TI-1)%%2)4JT=TT+1
AQ)=A(M)+C(IX)*X(IT)*x(IT)
IF(II ,LT. JI)GO TO 13
IVV=II/2
TX=( (TVV=1 ) *KHAK= ( TTV1 ) %%2) 41
A=A +(C(TX)*x(TVV ) ¥x(IVV) ) /2
13 GO TO 7

14 D0 94 JJ=1,KMAX
NN=KK
KK=KK~-20%M
Q(NN)=Q(NN)+2(JJ ,KK) *X(JJ)
IF(NN .EQ, JJ)Q(NN)=q( NN )+2(JJ KK ) *%(JIT)
KR=KK-+20#M

94 CONTINUE

Figure 19, Alteration of the Main Program for the Purpose of Testing
the Effect of the Non-Summed Polydisperse Coagulation Terms



APPEIDIX B

NON-DIIZISICTALIZATICON OF THE COACULATION EIUATICN

The coagulation equation for a sedimenting aerosol( Eguation ITI-56 )

is
@ @ k=3j=-1 @ k @
on /Bt F + 2 Dl le Bt - 4rrnjz DJstJ’mnm
. i m=1
m=j-1
®
- ;:j an.f3y .« o ( B~1)
J
and
T = kTNt/3k, (B-3)

The treatment of Equation( B-1 ) with Equations ( B~2 ) and ( B-3 )
produces

@ onyfor= F oy (34)
3k JT )
® RN |
Fj ETHz = Ij ( B—5 )
k=1 K
3u
© 2#2 Dy ,m i,m inm ———
i=1 NNKT

m=3-1
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6 oK
S o 5 (36)
i, : imiminm
Fa=
el
k
@ =47rn, Z - nm Fu
N m=1 j!m jlm N kT =
o k
~127Ey,
e
£ Z Dj,ij,mvm (37)
m=1
® -3, an, 3k . 3(n,/¥) _
J Fe— —_
dy ETN? kn ¥
-7 228 | (38)

kN Jy

By Stokes Law with the Cumningham correction factor( see Equation ITI-48 ),
for tern (5)

2
- _ 2-rrrjpg A
3 - (1+Aj-—-) (B9 )
9n rj

Equation ( B~9 ) is the Stokes terminal settling velocity corrected by
the Stokes-Cunningham factor. Using Fquation {( B~9 ), Equation ( B-8 )

becomes



3T Ia dy
J
Letting Y = SkThy (B-11)
2
2wr1pg

Equation ( B-10 ) becomes

r2 d
v
~(1+a, A ) J ( B-12 )
: Ty om [Emy
A3
2r1Pg
or
2 oY
- ey 200 32 09 (3-13 )
I'j 1'1 Y
Equation ( B-1) now becomes
vy g k=31 127F
—_ = I, + E D, R, v, v - v,
dr J & - i,mi,mim & J
me=j-1 .

k .

v A T142 9% |
Z;Dj,mnj,mm - (a0 =2 (3
n=



Now ( see Equations ( III-45 ) and ( III-46 )

Di’m= D, + D _ ( B-15)
and
R = T, +7T ( 16 )
i,m m

while for Brownian motion, the diffusivity is given by the Stokes-
Einstein relation { 5)

kT A
D. = (1+4, —), ( 317 )
i Ly r,
i J
Thus
kT 1 A 1 A
D; Ry n = —-—-617__ (— + 4, — + — + & —5)
i r r r r
i i m m
(:r:i + T ) ( B-18 )
and Z. is defined as
Di mBim 1 A 1 A
:—' —4-—-—; — mp——— —— e Sl
Zl,m = = = ( - + & " + - + A ¥ )x
i i m m
67
(= +1 ). ( B-19 )
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Now Equation ( B-14 ) becomes

av‘] k=i-1 [
3 IJ + § : Zi,mv:i.vm - 2',] Z,J,mvm
i=1 =1
m=j-i
. A T. o av.
-(1+Aj—;-)(-;'1) _85- ( B-20 )
J 1

At steady state avj/af = 0 and

4

dyj k=j-1 k
= I. + Z. V. v - 2v, Z ‘ v
avy J i,mim J Jom
i=1 m=1
B m=Jj-1i
SRVRLTIRY
(1+2, — X )S ( B-21)
J :r:j :t'.l

However ( see Equation ( III-6 )

A i : A 1.41/37 .2/3
(1 +a, = ) ra )2 = |1 +A4, (=) j
J 3 1 [ i oy J ] ( B-22)



where (see Equation ( III-49 ))

A, = 1,257 + .400e"1'1°rj/". ( 3-23 )

Multiplication of the exponential term in Equation ( B-23 ) by
r_I/r1 gives see Equation ( ITI-6 )

A = 1.257 + .400e~ 1410 ( Y )

-1.105"%2 1y, ( B-24 )

1.257 + .400e

Substitution of Equation ( B~24 ) into Equation ( B-22 ) gives

T

(1+ Aj _$T )(-E% )2 = j2/3 + 1.257(A/r1).]'1/3 +
J

;
.400(«\/1-1)3'1/3‘3‘1'10j /3""1/". ( B-25 )

Substitution of Equation ( B-25 ) into Equation ( B-21 ) gives

avy i Kk=3~1 X i
E—;—- = Ij + E Zi,mvivﬂ% - 2v‘_j E Zj'mvm
i=1 m=1
me=sj=-1 ( B-26 )

-

-

1/3
3+ 1.25700/2)3"3 + 40003 /2,)3 /3714103 / rm]

L]



It should be noted that the parameter A/r1 spoeifiss the particle

size range.
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APTEIDIX C

EVALUATION CF Zi o ? THE DLTTNSICNLESS CCATCULATICY COZTFICIET
’

The dimensionless coagulation coefficient is given as (see

Equation { B3-19 ))

1 A 1 A
Zi,m=(—r-' +Ai-;§'+—;+Am—;§)(ri+rm). (c-1)
i i m i

- Substitution of Equation { IIT-49 ) for the values of A, and A

in Equation { C-1 ) gives

1 A
Zim = [-— + =5 (1,257 + 40067 10Ty
i,m 2

T3 Ty -

1 A '
— -—( 1.257 +..400e "1°rm/“)](ri + rm) ( c-2 )

r
m m

Multiplication of Equation { C-2 ) by r.l/r1 produces

A
r, T,

1 [1.257 + .400e=1-10 U
1
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A
1 B Ty o T4 Ts T
+ s [ 1.257 + .a00e~ 110 = -+ —
r ] r ]2 A T
ip! m 1 T T
=, . 1 Ve
1 1
(c-3)
I‘l I‘Ill
But — =i g — o)/ ( see Equation ( III-6))
1‘1 1'1 .

so Equation { C-3 ) becomes

4

.1/3
A -
1/3 , = ( 1.257 + .400e~ 11017 774/d

i
o+ (200 ) | 25

A
m1/3 . g ( 1.257 + .400e

+ ' (c-4)
2/3

m

.2/3

1

—

-1 .10m1/31-1/,\ )

where, for this work, A/r1 takes on the values 0.10, 1,00, and 10.0.
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APPENDIX D

PROGRAMMING TECHENIQUE FCR THE DIF“"SIO“L“SS COAG“IJ“IOT COETFICTIINT

For a system of 400 particles the gain term array for Z (see
Table 4) demanded Z ,m coefficients on a diagonal of the array (as
shown by the arrow for j=5) for each particle "{ype", A larger view
showed that the gain terms included for all particle "types" required
the upper left triangle of the arrey (see Figurs 20).

Much time was wasted attempting to take advantaze of the fact that
zi,m equaled zm,i (see Equation ( IV-2 )) by employing standard sym=
metric matrix equations to transform the zi,m symmetric 2-dimensional
malrix into a 1-dimensional array. This would be advantageous because
only half the arra& would need to be calculated. The transform was
discarded because even 80,000 numbers plus the program and loss coef-
ficients was too large for machine core. An even greater problem was
caused because the numbers were not placed in a manageable order; i.e.,
the numbers on a diagonal of the array were arranged such that access
from the main program was too complex.

It was found that the core of the IBM-370/145 was capable of storing
a total of 80,000 géin or loss coefficients plus the program. The most
logical way to integrate Equation ( IV~3 ) was to employ continuously
incremented do-loops. This meant that an equation was needed to reduce
the total number of coagulatlon coefficients necessary to solve Equation
( Iv-3 ) from

( 4 X 80,000 for gain + 4 X 160,000 for loss ) = 960,000 numbers

%o, at most, 80,000, The factor of four appeared because the integration
was fourth-order.
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400,1 “400,2 %400,3 %00,4 .

Table 4. Gain Term Array for Zi n
4




- 399

Figure 20, Zi n Gain Term Coefficients Necessary for Solution of
. ’
Coagulation Equation

Figure 21, Visualization of Left z; . Triangle
’
Transformed into 1-Dimensioral Array

92



Examination of smaller systems and knowledge of the symmetry feat-
ures of this system allowed an equation that would convert the left
triangle of the gain term 2. m pmatrix into a logical 1-dimensicnal

- ¥
array (see Figure 21). This equation was determined to be

IR = 400(m-1) - (m=1)® 4+ 4 -m +1 | (=1)

where

B
]
[
"

subscripts of Z, term
i,m

=
]

coefficient of 1-dimensional array

Reversal of the Z, — subscripts in Equation ( D-1 ) described the
’

upper triangle of the 2 matrix. Thus, Equation ( D~1 ) was used to

describe the entire uppi;mleft triangle necessary for the Zi,m gain
terms with only cne~fourth of the matrix necessarily calculated.
Examination of the loss term coefficient, Zj,m' was Now necessary.
It was seen (see FEquation ( IV-4 )) that the Zj,m terms would be drawn
in sequence across the matrix (see Table 5 for j = 5 ). Various attempts
were made to decrease the number of calculations necessary to describe
the loss term coefficients matrix; however, all attempts failed.
It was necessary to keep in mind that the matrices Zi,m and zj,m
wvere, in actuality, the same matrix. They were, however, used independent-
ly in the computer program and had to be treated as two separate entities,
Since all attempts to decrease the number of loss term coefficients
failed, a compromise was made. The entire loss term coefficient matrix,
Zj,m' was calculated and written on tape in blocks of BO00 numbers. This
wae the maximum allowable computer blocksize. The main program was written
to manipulate the entrance and exit of the loss term coefficients in
blocks of 8000 numbers.
The gain term coefficient?s40,000 numbers were also written on tape,

but they were placed after the loss term coefficients. In this mannex

L
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m

: 2 400
21,1 21,2 21'3 21,4 21’400
Z2,1 22'2 22,3 22'4 asssssernran 32’400
%3,1 Z32  Zss By ttttttitettt Ip oo
241 Y, Zy Zy g e 2, 100

B B van UL LI LTI
“00,1  %00,2 %00,3  %400,4

Table 5, Loss Term Array for Zj m
»
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the main program cycled through the tape to the gain term coefficients
which were read into permanent machine core. The tape would then rewind
to the start of the loss term coefficients and the main pregram would
read the first block of 8000 numbers into core, When the next 8000
numbers were needed, the next block was read into core replacing the
previous one. When the main program had read all 160,000 loss term
coefficients the tape would rewind and restart the cycle. This method
pever allowed more than 48,000 numbers to be in core at any time.

A tape was made for A/r; = 1.00 in the 2y,
Equation ( Iv-2 )). A sample program used to create the tape can be

¢ &, .calculations'(see
Jelt ‘

found in Appendix E. For work involving the self-preserving size
distribution, two additional tapes were made carrying the values )\/r1 =

10,0 and 0.10.



PROGRAM USED TO CREATE TAPES FOR DIMENSIONLESS COAGULATION COEFFICIENTS

101

23

APPENDIX E

DIMENSION 2(400,20),C(40000),BB(8000)
FORMAT(® ',10X,13)

M=0

MM=0

KMAX=400

AB=10,0

RZ=1./3.

RX=2./3. ¢

S Jg=1

CALCULATION OF 10SS TERM COEFFICIENTS

D0 23 I=1,KMAX
A=I

B=J
ANZ0=1,25T+. 4*EXP( (=1, 1%(A**RZ) ) /AB)
BNZ0=1.25T+.4*EXP( (~1.1%(B**RZ) ) /AB)
SNOBs( A¥*RZ)+(B**RZ)

SKIN=ANZO*AB

SKUN=ENZO*AB

SNOOT=SKIN+A%*RZ

SNEET=SKUN+B**RZ

J=J=20%M

Z(1,J)=SNOB*( (SNOOT/A**RX)+(SNEET/B**RX) )
J=J+20%M

96

CONTINUE

MI=M*20+21

Fortran code pages 97 and 98 available
J=J+1 , from author.
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241
242
101
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107

31
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APPENDIX F

FRCOGRAM USZED TO IUTLICATT HIDY'S

pIvENSION X(402),xx{s00),4(200),6(400),D(

99

S0LUTICN

£00),7(400),T(400),Kk(4,40

10),B{1),¢(40000),2(400, 20) ,BB(8000),2X(100,1)},22(100,1)1kK(100,1),

217(100,1)

REAL K .

READ(5,101 )THAZ KA ,B(1)

FORMAT(* *,!'TINE INCLEZNT=',3X,F11.6///)
FORMAT(' ',10(2X,E10.3))

FORMAT( LI} ,1 Sx' €332 S SO 3 SO FHEE 3 IO 3 0 SR 10 ¢ )

FORMAT (8(E10.3))
FORMAT(¥7.3,13,F7.3)
FORMAT(' *,10X,I3)

FORMAT(* ','THE TOTAL MASS OF THE SYSTEM=',2X,F7.3)

L=t
(1)=0.0

CALCULATION OF DIMENSIONLESS TIME INCREMENT

DO 31 N=2,KMAX
T(N)=T(N=-1)+B(L)
CONTINUE

INITITIALIZATION OF RELATIVE PARTICLE CONCENTRATIONS TO ZERO

IO 92 N=1,KMAX
X(n)=0.0
XX(N)=0.0
CONTINUE

PRINTOUT OF INITIAL CONDITIONS.

WRITE(6,239)T(1)
WRITE(6,240) (X(MM) ,MM=1 ,KMAX)

Fortran code pages 100 to 104 available
from author.
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Fortran code pages 100 to 104 available from author.
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107
102
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APPENDIX G 105

FROGRAM FOR THE STEADY STATE SOLUTION

DIXENSION X(400),%x(400),4(400),Q(400),D(400),F(400),T(400) ,X(4,400),
18(1),c(40000),2(400,20) ,BB(8000),2X(400,1),22(400,1),1K(400,1),1Y(400
2,1),X1(400),6(4C0)

REAL K

READ(5,101 )TMAX ,KMAX,B(1),AB,BAB

FORMAT(* ', 'THE DIMENSIONLESS DISTANCE INCREMENT=',3X,F11.6/)

FORMAT(" ',10(2X,E10.3))

FORMAT(" "1SX"*******ii**l*lii****i*************I*******i')

FORMAT(8(E10.3))

FORMAT (F7.3,13,¥7.3,F7.3,F8.5) -

FORMAT(' ','THE TOTAL MASS OF THE SYSTEM =',2X,¥7.4///)
FORMAT(' ',10%,I3)

L=1 '

7(1)=0.0

CALCULATION OF THE DIMENSIONLESS DISTANCE INCREMENT

DO 31 N=2,KMAX
7(N)=T(N-1)+B{L)
CONTINUE

INTTTALIZATION OF RELATIVE PARTICLE CONCENTRATIONS TO ZERO

DO 92 N=1,KMAX
X(N)=0.0
XX(N)=0.0
CONTINUE

CALCULATION OF SETTLING TERMS

CALL SET(KMAX,G,AB) Fortran code pages 106-111
N=1 available from author

J=1
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PROGRAM NOMENCLATURE

X=v
T="7
TMAX = dimensionless distance limit
KMAX = number of particles in the system = 400
B = integration increment
"AB = value of )\/r1
BAB = value of r

1
conditions from previous increment needed for Runge-Kutta
integration routine.

]

settling terms
gain term probabilities

XX
G
c
XNCT=XNUT = test terms for machine underflow
A = gain to size class summation
Z = loss term probabilities
Q = intermediate loss from size class summation
D
iI
F
K
E
ZX
ZZ

= final loss from size c¢lass summation

feed to system

i

sum of foed and gains and losses to size classes with
division by settling terms

= Runge~Kutta slope

= dimensionless mass

=%

=y

The subroutine HPPLOT is a 396 statement plotting routine
available in the CSU computer library. )



APFERDIX H

G Tr s rm 7T T TN BT ANy T I R T AT
i o Ul ..--)..LCA-,L.‘..;\.J-\J FORTCIC I R TR R G

For a unit volume of the airmosphere, the mass of particles contalned

therin is

_2:43 _
M= _3_,w-rj;=nj . ( =1 )

The total mass fraction, W, of particles is

4 3 1j
—3—1rrjP T ’

M
W= . ( 52 )

J

however, application of the dimensionless concentration (see Equation
( 111-57 )) for

n
J
—"'""N = PJ ( H=3 )
and {see Equation ( III-6 ))
X = 173 ( B4 )

gives

E : 4 :
- --3-1rr1 jpyj |

113



For programming purposes, the constants contained in Equation ( H-5 ),

namely, 4:rr?;>/3, are neglecied and the dimensionless rmzss uzed by
Hidy ( 7 ) becomes

E =Z v 3 ' ( 56 )

For this work the dimensionless mass according to Equation ( H~6 )
was found to remain constant at E = 1,00 to 7 = 1.00. Hidy ( 7 ) found
that about 9% of the material initially present was lost during each
integration step. This difference could be due to the difference in
integration routines and trapping procedures,

4
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APPENDIX J

CONVERSION OF DIMENSIONLESS CONCENTRATICN DISTRIBUTIONS TO SELF-PRESERVING FORM

For the continuous spectrum, the distribution function n(v,t) is
defined by the relation

av = ndv ' (J-1)

where dN represents the number of particles per ﬁhit volume of fluid in
the size range v +.dv. In the similarity theory proposed by Swift and
Friedlander (16 ), n(v,t) can be written as ‘

n(v,:t) =

¥
¢

where ¢, the total volume fraction of particles is

[0 4]
¢=f nvdv = const, (J-3)
0
and
v N
")v = 3 . ( J-4 )

The function ¥ ( ﬂv) is independent of time. It represents a partic-~
ular solution to the coagulation equation written in terms of n(v,t)

when sedimentation is not considered. For this work, it is also assumed

»

\lf(nv) (J-=2)
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that _¢( ﬂv_) represents a solution of the coagulation equation for
each value of ¥ when sedimentation is not ignored,

Over some ranges of 7, solutions to the set of equations for the
discrete spectrum should display a form analogous to Equation { J=2 ).
It is logical to assume that Equation ( J-4 ) is the proper dimension-

less volume for the discrete case, or

J
n = = (J—s)

where

¢ =Z Vg (J-6)

To derive the form of the similarity function ¥ for the discrete
spectrum, it is noted that Equation ( J-1 ) is approximately

AN = n Av (J-7)

Since av = vy and AN = nj,

=]

n & . (J-S)

<

When this relation is substituted into Equation ( J-2 ), the proper
form of ¥ for the discrete distribution is obtained:

) = . (J3=9)
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It is noted that Equations ( J-2 ) and ( J-4 ) are written in terms
of volume. An analogous set of equations written in terms of radiuvs
are (2)

n(r,t) ¢1/3

v( 7. )= 3 ( 3-10)
where -
7= (=2y1/3 ( 3-11 )

For the discrete spectrum, the logical forms of Equations { J=-10 ) and
( J=11 ) are .

n, $1/3
v( 7, ) = (J-12)
rj Arj I\T‘JJ'/3
and /
i - XN _\1/3 _ :
ri = rj( p ) ( J=13 )
where ¢ is calculated by
¢= (4/3)rxln,. ( 3-14 )
s

¥( m. ) and ¥( 7. ) are related by Equations ( J-9 ) and ( J-12 )
J 3

or
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7 ' 1/3 2
¥( rj) n, ¢ N v,
—_— -
v( vy) ar, ¥¥/3 n, ¢
J J
172/3‘,
1N 1
= —%73° (J=-15 )
Arj d>2 3

Maltiplication of Bquation ( J-15 ) by 32/3/52/3 and application of
Fquation ( J=5 ) gives

n,.3y2/3 1/3
v(Tz) (e o)
7 a .2/3 * -
() Az, J
However v1/ 5 can be re t
r Vy presented as
(367r)1/3 T4
v1/3 - 5 . - (5=17)
In addition, Arj_ in a discrete system is
Arj =r1[ ( 341 )1/3 - j1/3] . (J-18 )

Expansion of ( i+ )1/3 in a Taylor’s series with retention of the first

term yields

AT.
J 3

(J-19)

Substitution of Equations ( J-17 ) and { J-18 ) into Equation ( J-16 )
yields a firal form of ' .
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$C T )= 020 (en) Py ey (320 )
J

Relations also exist between U and Uv « Application of Equations

( J-13 ) ana ( J=5 ) gives "3 J
vrj r, x/3 1/3
wE J/3 1/3,1/3,1/3
3
r-
2 — (J3-21)
1/3 /3
1
However,
3
4 :
VIB = ( )1/3. ( J=22)
3
Substitution of Equation ( J-22 ) into Equation ( J=21 ) with
r = r1j1/3(see Equation { III-6)) gives
1= (~2=)V/3,1/3 (3-23 )
rj 4 vj .

The continuous coordinates y/( 7. ) and T. are to be simulated by
the coordinates y/( "r ) and "ra for the dlacrete case., ¥ and 7 for
toe discrete case can be transformed into coordinates containing » and

J by the proper subst:.tut:.ons. Rewritmg Equation ( J-12 ) gives

nj Z: 47rr2 Ng 1/3
W ye L5 W] ( 524 )
"j , R

ﬂ:r::j




By using the dimensionless particle concentration, Zguation ( J-24 )

beceres

3

, 1/3
DJ[Z 4 ]

¥ ( nrj ) = B —= . (J-25)
Arj

fpplication of Equation ( J=19 ) for Arj and recognitien that rg = r?s
mives
1/3
2/
W )= 357, 4TS % ( J-26 )
J
3 - 3

In a discrete system, the approximation of Arj = [( j+1)1/2-j1/5] by
T, 3-2/ 3'/3 is very good for j>10. The ervor in using the approximation
averages less than 4% for j<10. For j»50 the error is less than 1%,

The coordinate 7, is defined by Equation ( J-13 ) and using the def-
inition for ¢ yields

J
1’ — V L)
r, = txdn |3 ( J-27)
z : s 8
8 5 N
Using the dimensionless particle concentration and substitution of
r.=r1r 31/3 id
5= T provides
" 5V/3
”rj = . ( J-28 )
4rs Vg 1/3

2.

8 3
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APPENDIX K

FROGRAM FCR Tnd CALCULATION OF TEE SILP-FRISERVING SIZE DISTRIRUTICH

242
240
244
245

DIMENSION X(1200),%2(1200,1),2x(1200,1),TK(1200,1),T¥(1200,1)

FORMAT(8(E10,3))
FORMAT(? 1,10(2X,E10.3))

FORMAT(' ',20X, 'DIMENSIONLESS PLOT IN TERKS OF RADTUS')
FORMAT(' ',20X,'DIMENSIONLESS PLOT IN TERMS OF VOLUME?)

READ(5,242) (X(I),1=1,1200)
ZAB=0,0

JAB=1

DO 3 I=1,400

S=I*JAB
ZAB=AB+S*X(1)*(4./3.)%*3.14
CONTINUE

JAB=1000

DO 4 T=401,800

J=I-400

S=J*JAB
ZAB=ZAB+S*X(I)*(4./3.)%3.14
CONTINUE

JAB=1000000

DO 5 I=801,1200

J=I-800

S=J*JAB
ZAB=ZAB+S*X(I)*(4./3.)%3,14
CORTINUE

ZAB=ZAB¥*(1,/3,)

JAB=1

D0 6 I=1,400

S=I*JAB

*

121

Fortran code pages 122-125
available from author.
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